A Reversible Luminescent Lanthanide Switch Based on a Dibenzo[24]-Crown-8-**Dipicolinic Acid Conjugate**

Min Han, Heng-Yi Zhang, Li-Xu Yang, Qiao Jiang, and Yu Liu*

*Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai Uni*V*ersity, Tianjin 300071, P. R. China*

yuliu@nankai.edu.cn

Received October 15, 2008

ABSTRACT

A novel host molecule H21 bearing a dibenzo[24]-crown-8 moiety and a dipicolinic acid group was synthesized, and its Tb3⁺ **complex displayed a satisfactory luminescent emission. The tris[2]pseudorotaxane formed from [Tb·13] ³**- **and ferrocene derivative 2 reveals excellent reversible luminescent lanthanide behavior.**

The construction of multicomponent supramolecular assemblies by weak, noncovalent interactions is attracting increasing interest in artificial systems due to their multifunctionality.1,2 Among the various artificial devices and machines, lanthanide luminescent-based devices³ are a welldeveloped field owing to their unique luminescence properties, such as long-lived excited states, long wavelength emission, large Stokes shift, and sharp linelike emission bands. The luminescence mechanism of the lanthanide complexes⁴ has been examined in detail, and many lanthanide luminescent-based devices have been developed. They show exciting applications on fluorescence imaging,⁵ light-emitting materials, $\overline{6}$ and sensing devices.^{3b,7} However, the reversible modulation of the luminescent intensity of lanthanide complexes remains challenging.

The lanthanide f-f transitions are Laporte-forbidden and very weak;⁸ therefore, luminescence is only observed at high concentrations or when excited directly by lasers. This problem can be resolved by using a sensitized process which

^{(1) (}a) Philp, D.; Stoddart, J. F. *Angew. Chem., Int. Ed.* **1996**, *35*, 1155– 1196. (b) Fyfe, M. C. T.; Stoddart, J. F. *Acc. Chem. Res.* **1997**, *30*, 393– 401. (c) Badjic´, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. *Acc. Chem. Res.* **2005**, *38*, 723–732. (d) Tian, H.; Wang, Q.-C. *Chem.*

*Soc. Re*V*.* **²⁰⁰⁶**, *³⁵*, 361–374. (2) Kay, E. R.; Leigh, D. A.; Zerbetto, F. *Angew. Chem., Int. Ed.* **²⁰⁰⁷**, *46*, 72–191.

^{(3) (}a) Keir, P. D.; Maddix, C.; Baukol, B. A.; Wager, J. F. *J. Appl. Phys.* **1999**, *86*, 6810–6815. (b) Leonard, J. P.; Gunnlaugsson, T. *J. Fluoresc.* **2005**, *15*, 585–595. (c) Tremblay, M. S.; Halim, M.; Sames, D. *J. Am. Chem. Soc.* **2007**, *129*, 7570–7577. (d) Petoud, S.; Muller, G.; Moore, E. G.; Xu, J.; Sokolnicki, J.; Riehl, J. P.; Le, U. N.; Cohen, S. M.; Raymond, K. N. *J. Am. Chem. Soc.* **2007**, *129*, 77–83. (e) de Silva, A. P.; Fox, D. B.; Moody, T. S.; Weir, S. M. *Pure Appl. Chem.* **2001**, *73*, 503–511. (f) Capecchi, S.; Renault, O.; Moon, D. G.; Halim, M.; Etchells, M.; Dobson, P. J.; Salata, O. V.; Christou, V. *Ad*V*. Mater.* **²⁰⁰⁰**, *¹²*, 1591–1594.

involves incorporating a sensitizing chromophore, often termed as "antenna", into the lanthanide-coordinating ligand, allowing indirect excitation of the lanthanide ion through an intramolecular energy transfer process. Photoinduced electron transfer (PET) mechanism in donor-acceptor systems is an effective approach to tune the excited-state emission, and it has been examined in detail that the lanthanide luminescence can be controlled by intramolecular PET within the ligands.^{7c} Herein, we design a ligand which consists of two moieties: pyridine-2,6-dicarboxylic acid (DPA) as an excellent chelator and antenna for Tb^{3+} and dibenzo-24-crown-8 (DB24C8) as a luminescent on/off switch via the binding of the guest molecule containing dialkylammonium salts. 9 The complex of the ligand with Tb^{3+} is a highly emissive lanthanide complex, and its luminescence can be modulated by the guest molecules. To the best of our knowledge, this is the first example of a

(6) (a) Yu, S.-Y.; Zhang, H.-J.; Yu, J.-B.; Wang, C.; Sun, L.-N.; Shi, W.-D. *Langmuir* **2007**, *23*, 7836–7840. (b) Chen, X.-Y.; Yang, X.-P.; Holliday, B. J. *J. Am. Chem. Soc.* **2008**, *130*, 1546–1547. (c) de Bettencourt-Dias, A. *Dalton Trans.* **2007**, 2229–2241. (d) Kang, T. S.; Harrison, B. S.; Foley, T. J.; Knefely, A. S.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. Adv. Mater. 2003, 15, 1093-1097.

Figure 1. Emission spectra of H₂**1** (1.5 \times 10⁻⁵ M) upon addition of Tb³⁺ in CH₃CN/CHCl₃ solution (1:1) at 298 K. $\lambda_{\text{exe}} = 282 \text{ nm}$, and the $*$ peak corresponds to the $2\lambda_{\text{exe}}$ signal.

reversible luminescent lanthanide switch based on noncovalent interactions.

The synthetic pathways of host molecule H_2 **1** and guest molecule **2** are shown in Scheme 1. The alkylation of 4-hydroxy-pyridine-2,6-dicarboxylic acid diethyl ester with 4-chloromethyl-dibenzo-24-crown-8 affords **5** in 85% yield. Subsequent hydrolyzation of **5** with lithium hydroxyl produces the target compound H2**1** in 97% yield. Compound **2** is obtained by condensation of ferrocene-carboxaldehyde with primary amines followed by NaBH4 reduction of the formed imines and then by treatment with HCl(aq) and NH_4PF_6 .

Due to the high association constants between DPA and the lanthanide ions, 10 the ligand can form a stable 3:1 luminescent complex with Tb^{3+} . In the present investigation, the complex $[Tb \cdot 1]^{3}$ was synthesized with a yield of 60%
by treating H₋1 with $ThNO_2 \cdot 6H_2O$ in MeOH (Supporting by treating H_2 **1** with $Tb(NO_3)_3$ ⁻⁶ H_2O in MeOH (Supporting Information). The coordination stoichiometry between H_2 **1** and Tb^{3+} was also obtained by the molar ratio method using fluorescence spectrometry. As seen in Figure 1 (inset), the curve of ΔF vs [Tb³⁺]/[H₂**1**] molar ratio shows an inflection point at a molar ratio of 0.33, corresponding to a $3:1 \text{ H}_2\text{1/}$ Tb3⁺ coordination complex. The result is consistent with our previous observation.¹¹ Benefiting from the fascinating luminescence property of Tb^{3+} , the complex displays a satisfactory luminescent emission in solution. When excited at 282 nm, the complex shows four emission peaks at 491

^{(4) (}a) Richardson, F. S. *Chem. Re*V*.* **¹⁹⁸²**, *⁸²*, 541–552. (b) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 1977–2010. (c) Quici, S.; Marzanni, G.; Carazzini, M.; Anelli, P. L.; Botta, M.; Gianolio, E.; Accorsi, G.; Armaroli, N.; Barigelletti, F. *Inorg. Chem.* **2002**, *41*, 2777–2784. (d) Dadabhoy, A.; Faulkner, S.; Sammes, P. G. *J. Chem. Soc., Perkin Trans. 2* **2002**, 348–357.

^{(5) (}a) Hanaoka, K.; Kikuchi, K.; Kobayashi, S.; Nagano, T. *J. Am. Chem. Soc.* **2007**, *129*, 13502–13509. (b) Weibel, N.; Charbonniere, L. J.; Guardigli, M.; Roda, A.; Ziessel, R. *J. Am. Chem. Soc.* **2004**, *126*, 4888– 4896. (c) Beeby, A.; Botchway, S. W.; Clarkson, I. M.; Faulkner, S.; Parker, A. W.; Parker, D.; Williams, J. A. G. *J. Photochem. Photobiol. B* **2000**, *57*, 83–90.

^{(7) (}a) Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. *J. Am. Chem. Soc.* **2004**, *126*, 12470–12476. (b) Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. *Angew. Chem., Int. Ed.* **2003**, *42*, 2996– 2999. (c) Terai, T.; Kikuchi, K.; Iwasawa, S. Y.; Kawabe, T.; Hirata, Y.; Urano, Y.; Nagano, T. *J. Am. Chem. Soc.* **2006**, *128*, 6938–6946. (d) Parker, D. *Coord. Chem. Rev.* 2000, 205, 109–130. (e) Gunnlaugsson, T.; Leonard, J. P.; Sénéchal, K.; Harte, A. J. *J. Am. Chem. Soc.* 2003, 125, 12062– 12063. (f) Fanning, A. M.; Plush, S. E.; Gunnlaugsson, T. *Chem. Commun.* **2006**, 3791–3793.

⁽⁸⁾ Mizukami, S.; Kikuchi, K.; Higuchi, T.; Urano, Y.; Mashima, T.; Tsuruo, T.; Nagano, T. *FEBS Lett.* **1999**, *453*, 356–360.

⁽⁹⁾ For recent reviews of ammonium-crown ether rotaxane, see: (a) Raymo, F. M.; Stoddart, J. F. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 1643–1663. (b) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. *Angew. Chem., Int. Ed.* **2000**, *³⁹*, 3348–3391. (c) Balzani, V.; Venturi, M.; Credi, A. *Molecular De*V*ices and Machines - A Journey into the Nano World*; Wiley-VCH: Weinheim, 2003.

^{(10) (}a) Werts, M. H. V.; Nerambourg, N.; Pélégry, D.; Grand, Y. L.; Desce, M. B. *Photochem. Photobiol. Sci.* **2005**, *4*, 531–538. (b) Gones, G., II.; Vullev, V. I. *J. Phys. Chem. A* **2002**, *106*, 8213–8222.

^{(11) (}a) Liu, Y.; Chen, G.-S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y.- L. *Nano Lett.* **2006**, *6*, 2196–2200. (b) Liu, Y.; Zhang, N.; Chen, Y.; Chen, G.-S. *Bioorg. Med. Chem.* **2006**, *14*, 6615–6620.

Figure 2. Emission spectra of the complex $[Tb·1₃]³⁻ (5 \times 10⁻⁶ M)$
and the emission changes at 544 nm (inset) upon addition of 2 in and the emission changes at 544 nm (inset) upon addition of **2** in CH₃CN/CHCl₃ solution (1:1) at 298 K. $\lambda_{\text{exe}} = 282$ nm, and the * peak corresponds to the 2*λ*exe signal.

nm (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 544 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 586 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), and 622 nm (${}^{5}D_4 \rightarrow {}^{7}F_3$) with a quantum yield of 0.046.

Ferrocene (Fc) has been widely utilized in multifunctional compounds as it is a good redox and electron donor active unit with the potential to be used in material with novel lightemitting and charge-transfer properties.¹² Many research projects have been focused on the chemical and electrochemical formation of pseudorotaxanes composed of alkyl(ferrocenylmethyl)-ammmonium and dibenzo[24]-crown-8.¹³ When 3.0 equiv of compound **2** bearing the Fc moiety was added to the solution of $[Tb^t1₃]³⁻$, the fluorescence
emission of the complex was significantly quanched, about emission of the complex was significantly quenched, about 94% at 544 nm (Figure 2), indicating that the introduction of the ferrocenyl guest molecule completely altered the luminescent behavior of $[Tb \cdot 1_3]^3$ ⁻. This observation should
be attributed to an intramolecular PET from the Eq mointy be attributed to an intramolecular PET from the Fc moiety of 2 to DPA of 1^{2-} after the formation of tris^[2]pseudorotaxane $[Tb \cdot 1_3 \cdot 2_3]$. Instead of 2 with dibenzylammonium hexafluorophosphate, the luminescence of the complex $[Tb·1₃]³⁻$ was
slightly decreased (Supporting Information), which provides slightly decreased (Supporting Information), which provides further evidence for the PET process in tris[2]pseudorotaxane $[Tb \cdot 1 \cdot 2 \cdot 3]$.

Interestingly, when KPF_6 was added to the solution of the tris[2]pseudorotaxane, the quenched lanthanide emission was restored. This observation suggests that the dialkylammonium cation in DB24C8 is replaced by K^+ and the intramolecular PET process from Fc to the DPA moiety is suppressed. This is reasonable because the association constant ($K_a = 7.6 \times$

Figure 3. Emission spectral changes observed for $[{\text{Tb}} \cdot 1_3]^3$, $[{\text{Th}} \cdot 1_3 \cdot 2_1] + K^+$ $[{\text{Th}} \cdot 1_3 \cdot 2_1] + 18$ -crown-6 and the emission changes $[Tb \cdot 1_3 \cdot 2_3] + K^+$, $[Tb \cdot 1_3 \cdot 2_3] + 18$ -crown-6, and the emission changes of $[Tb·1₃]³⁻$ at 544 nm (inset) in the absence (A) and in the presence (B) of 2 and added KPE (C E G) and 18-crown-6 (D F H) in (B) of 2 and added KPF₆ (C, E, G) and 18-crown-6 (D, F, H) in $CH₃CN/CHCl₃ solution (1:1).$

 10^3 M⁻¹)¹⁴ between DB24C8 and K⁺ is larger than that of the complex H₂**1·2** ($K_a = 1.2 \times 10^3$ M⁻¹).¹⁵ Therefore, the consequent complexation of K⁺ would dissociate the previconsequent complexation of K^+ would dissociate the previous tris[2]pseudorotaxane due to competitive binding of the dialkylammonium salts with K^+ .

Figure 4. Schematic representation of the presumed coordination mode for the $[Tb¹3²2₃]$ system.

To check the reversibility of this process, pristine 18 crown-6 was added to the solution. As shown in Figure 3,

^{(12) (}a) Collinson, M. M. *Acc. Chem. Res.* **2007**, *40*, 777–783. (b) van Staveren, D. R.; Metzler-Nolte, N. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 5931–5986. (c) You, C.-C.; Wurthner, F. *J. Am. Chem. Soc.* **2003**, *125*, 9716–9725. (d) Yang, H.-B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J. *J. Am. Chem. Soc.* **2008**, *130*, 839–841.

^{(13) (}a) Horie, M.; Suzaki, Y.; Osakada, K. *J. Am. Chem. Soc.* **2004**, *126*, 3684–3685. (b) Horie, M.; Suzaki, Y.; Osakada, K. *Inorg. Chem.* **2005**, *44*, 5844–5853. (c) Kihara, N.; Hashimoto, M.; Takata, T. *Org. Lett.* **2004**, *6*, 1693–1696.

^{(14) (}a) Takeda, Y. *Bull. Chem. Soc. Jpn.* **1983**, *56*, 3600–3602. (b) Takeda, Y.; Kudo, Y.; Fujiwara, S. *Bull. Chem. Soc. Jpn.* **1985**, *58*, 1315– 1316. (c) Tawarah, K. M.; Mizyed, S. A. *J. Solution Chem.* **1989**, *18*, 387– 401.

the luminescence quenching was reproduced again as a proof of regeneration of the tris[2]pseudorotaxane supramolecular assembly. This observation can be attributed to the strong binding ability of 18-crown-6 with K^+ ($K_a = 1.3 \times 10^6$) M-¹).16 The ion-controlled binding and release of **2** could easily be performed by adding and removing K^+ . That is, addition of K^+ causes the restoration of luminescence, while addition of 18-crown-6 is responsible for its quenching. The process can be repeated several times (Figure 3). The schematic representation of the switch mode for the $[Tb·1₃·2₃]$ system is illustrated in Figure 4, which reveals the expected luminescent lanthanide switch behavior.

In conclusion, the new host molecule H_2 **1** composed of DPA and DB24C8 as well as its Tb^{3+} complex has been synthesized, and the reversible luminescent behaviors of the complex upon addition of the ferrocenyl guest molecule **2** and K^+ have been investigated. The luminescence of the complex is quenched significantly in the presence of **2**, while its emission can be restored upon addition of K^+ . The reversible luminescent process can be modulated by controlling the binding and release of the guest molecules by adding K^+ or 18C6, respectively. Significantly, this experiment demonstrates that the luminescence of the tris^[2]pseudorotaxane $[Tb¹3²3]$ may be switched in a reversible manner by external chemical stimuli. This new synthetic strategy of a reversible luminescent lanthanide switch through electron transfer may find potential application in the construction of new moleculebased devices.

Acknowledgment. This work was supported by the 973 Program (2006CB932900), NNSFC (Nos. 20421202 and 20772063), and the Program for New Century Excellent Talents in University (NCET-05-0222).

Supporting Information Available: Experimental procedures and characterization data for host molecule H_2 **1**, the complex $[Tb·1₃]^{3–}$, and the fluorescence spectra of $[Tb·1₃]^{3–}$.
This material is available free of charge via the Internet at This material is available free of charge via the Internet at http://pubs.acs.org.

OL802376K

⁽¹⁵⁾ We determined the association constant (K_a) of the complex $H_2I\cdot2$ using ¹H NMR spectroscopy with the single-point method.¹⁶

⁽¹⁶⁾ Frensdorff, H. K. *J. Am. Chem. Soc.* **1971**, *93*, 600–606.